

Lesson Plan 1 Summary of Key Learning Interactions and Instruction

Lesson 1: Motion & Force

Learning Objectives:

- 1. Students will recognize examples of motion and force in the physical world.
- 2. Students will demonstrate that an object in motion will stay in motion or an object at rest will stay at rest unless acted upon by an outside force. (Newton's First Law)
- 3. Students will determine that acceleration is produced when a force acts on a mass. The greater the mass, the greater the amount of force necessary to accelerate the mass. (Newton's Second Law)
- 4. Students will conclude every action is followed by a reaction equal in magnitude and opposite direction. (Newton's Third Law)

Formative Assessment:

- 1. Exit ticket students will answer an exit ticket question by the end of the lesson.
- 2. Observation

Summative Assessment:

3. Students will answer questions showing their understanding of the three laws of motion.

Interactions/Activities	Differentiation	Materials/Resources	Field
,			Experiences/A dult Relationships
Description: Examining Newton's first law of motion. Use the following link for student's to watch as you move through the first law of motion <u>https://www.youtube.com/watch?v=gwu</u> kMowBB_s	Intervention: Have students take out Newton's Apple or any random objects from their surroundings so they can experience the first law during the demo	 Activity worksheet Objects that can roll, with different masses (i.e, tennis ball and kickball 	 Stepping outside the classroom and identifying motion and force
Steps: Show the students the activity log page with the definitions and explanations of Newton's Laws of Motion. Direct the students to the front for the video about the first law of motion and show the laws of motion video, pausing at 1:21 to discuss with students Newton's First Law of Motion. https://www.youtube.com/watch?v=gwu kMgwBB s Re-introduce the term	(Connections to paperclip, etc.) Experience) Extension: Have students Extension: Have students create an example that illustrates Newton's first law using the object around the classroom, or from items they brought to class (Connections to Experience, Discipline)		G in the physical world.
"inertia" which is another word used to describe the first law of motion. Conduct a Think-Pair-Share session and have students discuss their ideas of an	will work in pairs or groups in creating examples that illustrate Newton's first law. (Connections to		

object at rest. Have students think about unbalanced forces, or forces that would cause the object to stop being at rest. Students may share their responses.	Experience, Discipline, Integrated Communication)		
Have students think about objects in motion and unbalanced forces that may stop the object from moving in a straight line. Demonstrate a rubber ball (or any rolling object) rolling across the room, and asking what stops the item, or what can potentially accelerate, or speed			
moving in a straight line.			
Examining Newton's second law of motion. Steps: Demonstrate the second law of motion to students. Explain that the weight of an object is the force that gravity exerts on it and the standard metric unit of force is called the Newton. Explain that force is the product of mass multiplied by acceleration, meaning, the greater the mass of an object, the greater the force needed to accelerate the object. Show students the video https://www.youtube.com/watch?v=EJkP F21tORE stop at 1:56. Ask students to think about the tennis ball and kick ball, comparing the masses and deciding which object has more mass. Have students volunteer to demonstrate the force needed to toss either ball to each other; students should observe the force needed to toss the ball with more mass compared to the ball	students take out any random objects from their box and pass around so they can experience the second law during the demo. (Connections to Experience) Extension: Have students create an example that illustrates Newton's second law using the objects from their box. (Connections to Experience, Discipline) Intervention: Students will work in pairs or groups in creating examples that illustrate Newton's second law. (Connections to Experience, Discipline, Integrated Communication)	Objects of different masses to demonstrate the laws of motion	outside the classroom and identifying motion and force in the physical world.
with less mass.			
Description: Examining Newton's third law of motion. Steps: Demonstrate the third law of motion to students. Ask students if they can identify an action-reaction pair that is created	intervention: Have students take out any random objects from their box and pass around so they can experience the third law during the	 Balloon Fishing line or string Tape Scissors Straws Targets 	 Stepping outside the classroom and identifying motion and force in the

when holding an object, like a	demo.	•	Clothes	physical
rubber ball. Demonstrate to students that	(Connections to	pins		world.
the action experience between the two	Experience)			
objects (the ball and the ground) is				
experienced when the two meet, and the	Extension: Have students			
reaction is when the ball bounces up.	create an example that			
Emphasize to students that the ball will	illustrates Newton's third			
bounce higher depending on the amount	law using the objects			
of force, and lower to the ground when	from their box.			
less force is applied.	(Connections to			
	Experience, Discipline)			
Show video	Internetions Chudonte			
<u>nttps://www.youtube.com/watch?v=gQZ</u>	intervention: Students			
SIVGU_TO FOR NEWTON'S THIRD Law OF	will work in pairs or			
Wotion	groups in creating			
Ack students if they have over blown a	Nowton's third low			
Ask students if they have ever blowing	Connections to			
happens with that halloon. Discuss with	Experience Discipline			
students that the action occurring is the	Integrated			
air exiting the balloon, and the reaction is	Communication)			
the balloon moving in the opposite	communication			
direction of where the air comes out				
direction of where the directines out.				
Ontional activity: Balloon Bocket				
optional activity. Bandon Rocket				
 Set up a fishing line or string 				
about 10 or more ft., you may				
set up several stations based on				
vour class size		_		
 Cut plastic straws in 2" length 		_		
and secure the string through				
one piece.				
 Use a balloon pump to fill 				
balloons with air				CHAM
 Using a piece of tape, attach a 				GUAM
part of the balloon to the straw				
secured on the fishing line and	OF DEFENSE YO	JTH PR	OGRAM	
bring it the a starting point				
 Use clothes pins to keep air 				
inside as students set up				
 To make activity more exciting, 				
place character images midway				
or at the end of the string for				
students to target when their				
balloon is released				
• Students may measure the				
distance their balloon travels;				
targets may have set distances				
for easier measurement				
 Pumps may be set per balloon 				
and can be used to graph at the				

end of the lesson for distance						
traveled relative to how many						
pumps are needed to fill the						
balloon. Three trials can be						
conducted, with the amount of						
air pumped into balloons						
increasing.						
Have students make predictions						
based on how many pumps of						
air the balloon is filled with and						
the distance it will travel						
	Lesson Plan 2					
Summary of K	ev Learning Interactions and	Instruction				
· · · · · · · · · · · · · · · · · · ·						
Lesso	n 2: Engineering Design Proc	cess				
Learning Objectives:						
 Students will recognize th 	e engineering design process	s is a method of problen	n-solving used to			
create a system, a produc	t, or a process that meets an	identified need.				
Students will apply the steeler	eps of the Engineering Design	n Process to solve a simu	ulated or			
real-world problem.						
Formation Assessments						
Formative Assessment:		here the second of the large	-			
1. EXIT LICKET – Students Will	answer exit ticket questions	by the end of the lesso	n.			
2. Observation						
Summative Accessments						
Summative Assessment:						
1. Students will apply the engineering design process in performing the bridge quest task.						
Culminating Assessment:						
1. Students will design the s	afety restraint device Eggsy's	glider.				
Performance Assessment:						
 Students will present their 	r completed project and test	their design.	GUAM			
			00/11/			
Interactions/Activities	Differentiation	Materials/Resources	Field			
			Experiences/Ad			
			ult			
			Relationships			
Description:	Intervention: Use of	Engineering	 Authentic 			
Students will apply the engineering	Engineering Design	Design Wheel	task that			
design process in a real-world situation.	Process wheel.		allows			
	(Connections to		students to			
SCEIVARIO: EggDert's COUSIN, EggSy IS a	Discipline)		connect			
thrill-seeker who loves the outdoors.	Extension: Redesign the		what they			
Eggsy has lasked students from your	increased drop boight		iearned in			
that will protect him from jumping from	(Connections to		a real-world			
high heights	Experience)		scenario			
	Intervention. Students		SCENALIO.			
Steps:	will work in groups to					
•						

<i>1st Law</i> - Object in Motion; Unbalanced force <i>2nd Law</i> - F=ma		
3rd Law - Action Reaction		
TECHNOLOGY CONNECTION:		
Research		
Use of technological tools		
C		
		4

A DEPARTMENT OF DEFENSE YOUTH PROGRAM

Performance/Student Choice Assessment					
	Rubric Scale				
	4	3	2	1	0
Objectives					
The learner will	Students can	Students can	Students can	Students can	Students need a
using ratios	to decimals and	fractions to	fractions to	fractions to	solving and
expressed as a	vice versa and	decimals and	decimals and	decimals and	converting
fraction. a	convert fractions	vice versa	vice versa	vice versa and	fractions to
decimal, or a	and decimals to	and convert	and convert	convert	decimals and
percent.	percent and vice	fractions and	fractions and	fractions and	vice versa and
	versa. Students	decimals to	decimals to	decimals to	converting
	can apply and	percent and	percent and	percent and	fractions and
	solve problems	vice versa.	vice versa	vice versa	decimals to
	using ratios	Students can	with no help.	with help.	percent and vice
	expressed as a	apply and			versa.
	fraction, a	solve		7	
	norcont with po				
	heln	expressed as			
	neip.	a fraction, a			
		decimal, and			
		a percent			
D		with little to			
	V	no help.			
The learner will	Students	Student	Student	Student	Students
recognize the	collaborate and	communicate	communicate	communicate	communicate
engineering	communicate	s with his	s with his	s with his	with his team
design process	with his team in	team in	team in	team in	in designing
is a method of	designing their	designing	designing	designing	their safety
solving used to	device and keep	restraint	restraint	restraint	with little to no
create a	a log of their	device and	device and	device	narticination in
system, a	process.	keeps a log of	keeps a log of	Student is	creating safety
product, or a	progress,	their	their	sharing	restraint
process that	materials, and	progress,	materials.	his/her ideas	devices.
meets an	budget. Student	materials,	Student is	and thoughts	
identified	is sharing his/her	and budget.	sharing	with his/her	
need.	ideas and	Student is	his/her ideas	team, with	
	thoughts with	sharing	and thoughts	some	
	his/her team	his/her ideas	to his/her	participation	
	and listens to	and thoughts	team.	in creating a	
	individual input	with his/her	Students	satety	
	Student actively	team. Student	parts of the	device	
	creates the	actively	safety		

	safety restraint device with the team.	creates the safety restraint device with the team.	restraint device.		
The learner will apply the steps of the Engineering Design Process to solve a simulated or real-world	Students can apply the eight steps in the Engineering Design process to completing their project.	Students can apply the 6-7 steps in the Engineering Design process to complete their project.	Students can apply the 4-5 steps in the Engineering Design process to complete their project.	Students can apply the 1-3 steps in the Engineering Design process to complete their project.	Students can apply 0 steps in the Engineering Design process to complete their project.
problem. The learner will recognize examples of motion and force in the physical world (Newton's Law of Motion.	Students will recognize the motion and force acts on Eggsy and the glider in the crash simulation without help from the teacher.	Students will recognize the motion and force acts on Eggsy and the glider in the crash simulation with little to no help from the teacher.	Students will recognize the motion and force acts on Eggsy and the glider in the crash simulation with medium help from the teacher.	Students will recognize the motion and force acts on Eggsy and the glider in the crash simulation with help from the teacher.	Students will recognize the motion and force acts on Eggsy and the glider in the crash simulation with help and guidance from the teacher.
Total Possible Points					

A DEPARTMENT OF DEFENSE YOUTH PROGRAM

Image sourced from: https://www.teachengineering.org/Images/edpHub/EDPHub_Graphic.png